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Intense interest2"7 in the transition-metal-promoted fixation of 
carbon dioxide has led us to explore the interaction of CO 2 with 
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Figure 1. Absorption spectra of (A) CoL+ \m a l 678 nm (e = 1.80 x 10" 
M-1 cm"1) and (B) CoL(C02)+ \max 530 nm (e = 900 M"1 cm"1) in 
CH3CN at 25 0C. Insert: In(K1) versus 1000/7. The K1 values (eq 1) 
at 25-77 °C were calculated from the 530- and 680-nm absorbances of 
0.1-1 mM CoL(C02)+ solutions containing 0.01-0.1 M CO2.17 

the coba l t ( I ) macrocyc le , C o L + (L = [14]diene = 
5,7,7,12,14,14-hexamethyl-1,4,8,11 -tetraazacyclotetradeca-4,11 -
diene). Fisher and Eisenberg6 reported the electrocatalytic activity 
of CoL 2 + in C O 2 reduction in C H 3 C N / H 2 0 , and Gangi and 
Durand7 established the reversible binding of CO 2 to CoL + in dry 
Me 2 SO by means of cyclic voltammetry. In earlier work CoL2 + 

was found to mediate the photoreduction of water to H2.8 Here 
we describe the reversible binding of CO 2 to CoL + in C H 3 C N 
as characterized by UV-vis spectroscopy, a CO 2 reduction 
pathway involving two cobalt centers, and the formation, in the 
solid state, of a binuclear species containing the C o - C ( O H ) - O - C o 
moiety. 
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(14) As judged from 1H NMR spectra of freshly prepared solutions in 
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(15) Upon cooling to 40 0C, however, the solution becomes brownish 
yellow, but the purple hue (530-nm band) returns when the solution is warmed 
to room temperature. A small sample of the tan solid was obtained at -70 
0C from THF-CH3CN: IR (Nujol) 1653 cm"1, 1559 cm"1. The thermo-
chromism, which may be due to addition of a solvent molecule to CoL(C02)+, 
is being further investigated. 
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ClO4, 25.8; Na, 2.46; C, 38.94; H, 6.19; N, 10.71. When CoL+ was first 
crystallized from CH3CN10 to separate it from Na+, a sample of lower Na+ 

content was obtained: Anal. Calcd for CoL(CO2)(C!O4)-0.25NaClO4: Co, 
11.48; Na, 1.12; ClO4, 24.21. Found: Co, 11.5; Na, 1.38; ClO4, 23.3. IR 
(Nujol) 1700, 1663, 1643, and 1607 cm"'. 
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Figure 2. An ORTEP view of the (CoL)2(CO2H)3+ unit 1 and one per-
chlorate anion (thermal ellipsoids at 50'.? probability level) with hydrogen 
atoms omitted. (Note that the presence of the proton in the CO2H group 
is inferred from the short 02-10-021 distance (sec below). In view of 
the structural disorder (sec Supplementary Material), the alternative 
formulation (CoK)2(CO2I

3+ cannot be entirely ruled out.21) The labeling 
scheme is as indicated with N4 out of the plane and NI 1 behind the 
plane. The primed atoms are related to the unprimed atoms by a pseu-
doinversion center located between Cl and Ol of the carbon dioxide. 
Both Co centers arc five coordinate, with four coordination sites being 
filled by the macrocvele and the fifth by the carbon (Cl) or oxygen (OD 
of the bridging CO2H. A hydrogen bond between 02 (of CO2H) and 
021 (OfCIO4-) (distance 2.38 (8) A) is proposed. There are intradimer 
hydrogen bonds between N8' and 02 and N8 and Ol as well as a weak 
hydrogen bond between Nl and 021 of the pcrchloratc anion. Selected 
bond distances (A), unprimed (primed): Co(I) N(I), 1.95 (4), (1.96 
(4)); Co( I )-N(4). 2.06 (5). (1.84 (4)): Co( 1 )-N(8). 1.68 (3). (2.04 (4)); 
Co(I)-N(I l ) . ! .98 (3). (1.85 (4)); Co(I)-C( 1). 2.06 (6); Co(I')-0(I). 
2.28 (3). 

Upon introduction of CO2 into intensely blue CoL+ solutions 
in CH3CN or DMF 9"" at room temperature, a pale purple CO2 

adduct formed immediately.12 No such reaction was found for 
NiL+ .1 3 Solutions of the CO2 adduct are diamagnetic.14 and a 
1:1 adduct (eq I) is the dominant cobalt species over the COn-

Co([14]dienc)+ + CO2 = Co([14]dicnc)(CO0+ (1) 

centration range 0.1-6 mM Co(I). 0.1 1 atm CO2 , at 25 0 C. 1 5 

The solid pcrchloratc salt.16 isolated from CII1CN following rapid 
addition of THF, has C-O stretching frequencies (IR (Nujol): 
K C = N ) 1657 cm"'; KC-O) 1653, 1304. 1222 cm-', confirmed 
by 13CO2 labeling) that are quite similar to those reported for a 
Co(salen)C02 derivative (1650, 1280. 1215 c n r ' ) 4 b and are 
consistent with substantial transfer of charge to CO2 . 

When solutions of the adduct were heated at reduced CO2 

pressure, partial dissociation to the parent complex was observed. 
Thus cq 1 could be characterized by UV-vis spectroscopy (Figure 
I ):17 Af;,°(298) = (-5.5 ± 1.0) kcal moL1. AW1

0 = (-5'.4 ± 1.0) 
kcal moL1. A-S1

0 = (+0.4 ± 3) cal K"1 mol"'. The binding constant 
A1 =(1.2 ±0 .5) X 104M ' a t 298 K in CH1CN is slightly smaller 
than that (7 X 104 M"1) reported for DMSO.7 possibly reflecting 
the greater "solvation" of CO2 in CH 1CN (solubility 5 = 0.28 
M atm"1 at 298 K'7) than in DMSO (S = 0.082 M atm"1);7 when 
referred to gaseous CO2 as standard state, the equilibrium con­
stants are within experimental error of one another. The values 
of A/ / , 0 and AV,0 reflect a complicated set of factors including 
the binding and immobilization of a linear. CH(CN-solvated CO2 

(17) The solubility of CO2 in CH3CN as a function of temperature was 
determined by adding to a CO,-saturated sample a known excess of aqueous 
Ba(OH)2 which was back-titra'ted with standard HCI. Our solubility value. 
0.28 M atm"1 at 298 K. is an order of magnitude larger than thai" reported 
for CHjCN with 0.1 M TBAP. 

(18) (a) Carbon monoxide and H2 were determined by GC (molecular 
sieve 5A; He or Ar carrier); NaHCO1. by IR and microanalysis, (b) The 
dependence of k,„ on [H2O) is presently under study: Fujita. F... work in 
progress. 

and the transfer of substantial charge from the metal to CO2 . 
Dilute solutions of CoL(COj)+ arc extremely stable in Cl I1CN: 

a 0.3 mM solution decayed only ~ 15% in IO daysat 23 "C. In 
fact, the disappearance of CoL(COO+ is second order, -d [CoL-
(C0 2 ) + ] /d , = * a p p [CoL(C0 2 )+ ] 2 (k\„ = (1.0 ± 0.1) X 10 3 M"1 

s-' at 23 0 C . 0.1-1 atm CO2 . 0.1-6 mM CoL(COj)+) . The 
reaction products" arc (yields based on initial Co(II)) CoL2+ (1.0). 
CO (0.3). H2 (0.08). and NaHCO 1 (0,8). The H2 and NaHCO 1 

likely arise from trace water (ca 30 ppm). and precipitation of 
NaII(X)1 is driven by its extreme insolubility in C H 1 C N . " The 
second-order rale law suggests cither direct reaction of two 
CoL(CO2I+ species resulting in electron and "oxide" transfer 
(yielding CO and CO1

2 / H C O 1 ) or an "inner-sphere" mechanism 
involving a binuclear intermediate. Although the UV -vis spectra! 
studies provide no evidence for binuclear species under the con­
ditions of the solution equilibrium studies.19 evidence for such a 
species I, shown in Figure 2. is found in the solid state.20 The 
involvement of a binuclear species such as 1. which contains the 
LCo-C(OH)O-CoL moiety.2' in the formation of CO would be 
consistent with the observed rate law in CH 3CN provided that 
there is an additional CO. (acting as O2 or OH" acceptor) in the 
activated complex. 

The reversible 1:1 binding of CoL+ to CO2 in CII3CN and 
Me2SO7 reflects the strongly nucleophilic character of this low-spin 
d8 metal center. However, CO2 binding alone docs not yield 
sufficient activation to lead to CO2 reduction in these media. 
Instead the involvement of two CoL+ centers is implicated. 
Although single-centered, two-electron reduction is conceivable 
for the cobalt systems, it is not a significant pathway in CH3CN. 
A third pathway involving reaction of CO2 with the hydride 
CoL(H)2 + (the conjugate acid of CoL+)2 2 could be significant 
under elcctrocatalytic conditions.6 The rich diversity of CO2 

binding and reduction modes in the Co[l4]dienc system is the 
focus of continuing studies. 
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(19) From the spcclropholomclric studies of eq I. K2 < 1 is obtained. 

2CoL(CO2)* — [CoLl2CO2
1+ + CO2 (2) 

(20) (a) Diamond-shaped crystals of the pcrchloratc sail of 1 (IR (Nujol) 
1661. 1643. 1610 cm"') were grown from THF/CH.CN over 5 days at -5 °C. 
Crystal data are as follows: [Co(N4C,6H,2)|2<CO,H)(C104),-2Cil,CN: 0.20 
X 0.23 X 0.47 mm crystal. /Vo2, (no. 29). a = 23.263 (13) A. ft = 10.378 
(4) A, e = 21.551 (4) K. V = 5203 (6) A\ Z = 4. p(calcd) = 1.410 g/cm'. 
Mobsd) = 1 43 g/cm' (CCI4 and hexanc). Knraf-Nonius Cad-4 diffraclom-
eter, n = 8.66 cm"' (Mo Kn) (no absorption correction applied), 23 "C. 2flm„ 
= 40°. N„„ = 5550. (/ > O) = 3356. A„ = 2083 (K„ = 0.032). (/•'„ > 
1.5OCo)) is 1449. R = 14.0, /?„ = 12.9. Heavy alom solution, full-matrix 
least-squares refinemenl (SHELX-76) all non-hydrogen atoms isotropic except 
Co and Cl. all hydrogens were placed at calculated positions and refined with 
a common isotropic thermal parameter. (Data collection was attempted at 
150 K. but after 3 days new peaks appeared, indicating an increase in the unit 
cell volume -possibly due to a phase change.) A full report of the structure 
will be published elsewhere, (b) The atom numbering scheme is given in the 
following: Goedken, V. I..; Merrell. P. H.; Busch. D. H. J. Am. (hem. Sac. 
1972. 94. 3397-3405. 

(21) An alternative interpretation (in which CO2. not CO2H. is bridging) 
is discussed in the Supplementary Material. 
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